Skip to content

3-2-1 一维偏拔问题证明细节补充

将 u(z) 转为极坐标形式

\[ u(z) = -\frac{1}{2\pi i} \iint_C \frac{\psi(\zeta)}{\zeta - z} \, d\overline{\zeta} \wedge d\zeta \] 将 \(\zeta\) 转换为极坐标形式 \(\zeta = z + re^{i\theta}\),我们有: \[ d\zeta = e^{i\theta} \, dr + ire^{i\theta} \, d\theta \] \[ d\overline{\zeta} = e^{-i\theta} \, dr + ire^{-i\theta} \, d\theta \] 接下来我们需要计算面积元素 \(d\overline{\zeta} \wedge d\zeta\): \[ d\overline{\zeta} \wedge d\zeta = (e^{-i\theta} \, dr + ire^{-i\theta} \, d\theta) \wedge (e^{i\theta} \, dr + ire^{i\theta} \, d\theta) \] 展开楔积: \[ d\overline{\zeta} \wedge d\zeta = e^{-i\theta} e^{i\theta} \, dr \wedge dr + ire^{-i\theta} e^{i\theta} \, d\theta \wedge dr + ire^{-i\theta} e^{i\theta} \, dr \wedge d\theta + i^2 r^2 e^{-i\theta} e^{i\theta} \, d\theta \wedge d\theta \] 注意到 \(dr \wedge dr = 0\) 和 \(d\theta \wedge d\theta = 0\),我们得到: \[ d\overline{\zeta} \wedge d\zeta = i r \, d\theta \wedge dr - i r \, dr \wedge d\theta \] 由于 \(d\theta \wedge dr = - dr \wedge d\theta\),我们有: \[ d\overline{\zeta} \wedge d\zeta = 2i r \, d\theta \wedge dr \] 将这一结果代入 \(u(z)\) 的表达式中,我们得到: \[ u(z) = -\frac{1}{2\pi i} \iint_C \frac{\psi(z + re^{i\theta})}{z + re^{i\theta} - z} \cdot 2i r \, d\theta \wedge dr \] 简化分母: \[ u(z) = -\frac{1}{2\pi i} \iint_C \frac{\psi(z + re^{i\theta})}{re^{i\theta}} \cdot 2i r \, d\theta \wedge dr \] 简化后得到: \[ u(z) = -\frac{1}{2\pi i} \iint_C \frac{\psi(z + re^{i\theta})}{e^{i\theta}} \cdot 2i dr \wedge d\theta \] 注意到 \(\frac{1}{e^{i\theta}} = e^{-i\theta}\),所以: \[ u(z) = -\frac{1}{\pi} \iint_C \psi(z + re^{i\theta}) \cdot e^{-i\theta} \, dr \wedge d\theta \] 因此,将 \(\zeta = z + re^{i\theta}\) 代入 \(u(z)\) 的表达式后,我们得到 \(u(z)\) 的极坐标形式为: \[ u(z) = -\frac{1}{\pi} \iint_C \psi(z + re^{i\theta}) \cdot e^{-i\theta} \, dr \wedge d\theta \]

将两个偏导数组合为对z拔偏导数的形式

为了将 \(\frac{\partial u}{\partial x}\) 和 \(\frac{\partial u}{\partial y}\) 组合成 \(\frac{\partial u}{\partial \overline{z}}\) 的形式,我们需要使用复变量中的复偏导数算子。特别是,我们可以利用算子 \(\frac{\partial f}{\partial \overline{z}}\) 将实偏导数转换为复偏导数。 首先,我们回顾算子 \(\frac{\partial f}{\partial \overline{z}}\) 的定义: \[ \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left( \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \] 我们知道 \( u \) 对 \( x \) 和 \( y \) 的偏导数分别为: \[ \frac{\partial u}{\partial x} = \iint_C \frac{\partial \psi}{\partial x} e^{-i\theta} \, dr \wedge d\theta \] \[ \frac{\partial u}{\partial y} = \iint_C \frac{\partial \psi}{\partial y} e^{-i\theta} \, dr \wedge d\theta \] 根据 \(\frac{\partial f}{\partial \overline{z}}\) 的定义,我们有: \[ \frac{\partial u}{\partial \overline{z}} = \frac{1}{2} \left( \frac{\partial u}{\partial x} + i \frac{\partial u}{\partial y} \right) \] 现在我们需要将 \(\frac{\partial u}{\partial x}\) 和 \(\frac{\partial u}{\partial y}\) 代入到这个公式中: \[ \frac{\partial u}{\partial \overline{z}} = \frac{1}{2} \left( \iint_C \frac{\partial \psi}{\partial x} e^{-i\theta} \, dr \wedge d\theta + i \iint_C \frac{\partial \psi}{\partial y} e^{-i\theta} \, dr \wedge d\theta \right) \] 由于积分区域相同,我们可以将积分合并: \[ \frac{\partial u}{\partial \overline{z}} = \iint_C \left( \frac{1}{2} \left( \frac{\partial \psi}{\partial x} + i \frac{\partial \psi}{\partial y} \right) e^{-i\theta} \right) \, dr \wedge d\theta \] 结合上面的算子定义,我们有: \[ \frac{\partial u}{\partial \overline{z}} = \iint_C \left( \frac{\partial \psi}{\partial \overline{\zeta}} e^{-i\theta} \right) \, dr \wedge d\theta \] 现在,我们将 \(\zeta = z + re^{i\theta}\) 带入,并用 \(\frac{\partial \psi}{\partial \overline{\zeta}}\) 替换 \(\frac{\partial \psi}{\partial x}\) 和 \(\frac{\partial \psi}{\partial y}\) 的组合形式: \[ \frac{\partial \psi}{\partial \overline{\zeta}} = \frac{1}{2} \left( \frac{\partial \psi}{\partial x} + i \frac{\partial \psi}{\partial y} \right) \] 最后,得到: \[ \frac{\partial u}{\partial \overline{z}} = -\frac{1}{2\pi i} \iint_C \frac{\partial \psi}{\partial \overline{\zeta}} \frac{d\overline{\zeta} \wedge d\zeta}{\zeta - z} \] 这样我们就成功地将 \(\frac{\partial u}{\partial x}\) 和 \(\frac{\partial u}{\partial y}\) 组合成了 \(\frac{\partial u}{\partial \overline{z}}\) 的形式。

Related Posts

  1. 3-1-1 Lambert W 函数
  2. 3-1-2 复变量z及其复共轭的微分二形式分析
  3. 2-1-2 复函数积分的参数化形式
  4. 2-1-2 对f(z)分离实部虚部后的积分
  5. 2-2-1 z的n次方分之一沿圆周一圈的积分
  6. 2-2-1 全微分用z和z的共轭的复偏导数的表示形式
  7. 2-1-2 复函数的导数在一点 不为零时,对应的雅可比行列式