是的,如果一个全纯函数在一个小圆盘上(即在某个开集上)的模是常数,那么通过柯西-黎曼(Cauchy-Riemann)方程可以推出这个全纯函数在这个小圆盘上是常数。
详细证明
假设 \( f(z) \) 是在开集 \( U \subset \mathbb{C} \) 上的全纯函数,并且在某个小圆盘 \( D(z_0, r) \subset U \) 上 \( |f(z)| = c \),其中 \( c \) 是一个常数。我们需要证明 \( f(z) \) 在 \( D(z_0, r) \) 上是常数。
设 \( f(z) = u(x, y) + iv(x, y) \),其中 \( z = x + iy \),\( u \) 和 \( v \) 分别是 \( f \) 的实部和虚部。因为 \( f \) 是全纯函数,它满足柯西-黎曼方程:
\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \]
\[ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \]
由于 \( |f(z)| = c \),我们有
\[ |f(z)|^2 = u(x, y)^2 + v(x, y)^2 = c^2 \]
计算 u 和 v 的导数
对上述等式两边分别对 \( x \) 和 \( y \) 求导,得到:
\[ \frac{\partial}{\partial x} (u(x, y)^2 + v(x, y)^2) = 0 \]
\[ 2u \frac{\partial u}{\partial x} + 2v \frac{\partial v}{\partial x} = 0 \]
\[ u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial x} = 0 \]
类似地,对 \( y \) 求导,得到:
\[ \frac{\partial}{\partial y} (u(x, y)^2 + v(x, y)^2) = 0 \]
\[ 2u \frac{\partial u}{\partial y} + 2v \frac{\partial v}{\partial y} = 0 \]
\[ u \frac{\partial u}{\partial y} + v \frac{\partial v}{\partial y} = 0 \]
使用柯西-黎曼方程
利用柯西-黎曼方程:
\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \]
\[ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \]
我们可以把这些导数代入上面的等式中:
\[ u \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial x} = 0 \]
\[ u (-\frac{\partial v}{\partial x}) + v \frac{\partial v}{\partial x} = 0 \]
\[ -u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial x} = 0 \]
\[ (v - u) \frac{\partial v}{\partial x} = 0 \]
由于这对任意的 \( z \) 成立;
\[ \, \]
类似地,可以得到:
\[ u \frac{\partial u}{\partial y} + v (-\frac{\partial u}{\partial x}) = 0 \]
\[ u \frac{\partial u}{\partial y} - v \frac{\partial u}{\partial y} = 0 \]
\[ (u - v) \frac{\partial u}{\partial y} = 0 \]
从而:
\[ \frac{\partial u}{\partial x} = 0 \quad 且 \quad \frac{\partial u}{\partial y} = 0\]
或
\[ u = v \]
而当 u = v 时,将 u = v 代入C-R方程可得
\[
\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} \quad \text{和} \quad \frac{\partial u}{\partial y} = -\frac{\partial u}{\partial x}
\]
结合以上两条等式,可以得出:
\[
\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0
\]
结论
对于函数 \( f(z) \), \( u \) 和 \( v \) 的偏导数都是零。
这表明 \( u \) 和 \( v \) 都是常数。因此,\( f(z) \) 在 \( D(z_0, r) \) 上是常数。