多项式乘以 `$x^2$` 为线性映射
定义如下线性映射: `$T \in L( P( R ), P( R ) ) $` 对于所有 `$x \in R$` , `$(Tp)(x) = x^2p(x)$`
此映射为一线性映射,证明过程如下
先来证明加性(additivity)
设
\begin{align*}
u = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n
\end{align*}
\begin{align*}
v = b_0 + b_1 x + b_2 x^2 + \cdots + b_n x^n
\end{align*}
然后
\begin{align*}
T(u + v) &= x^2 (u + v) \\
&= x^2 \Big((a_0 + b_0) + (a_1 + b_1) x + \cdots + (a_n + b_n)x^2\Big) \\
&= (a_0 + b_0) x^2 + (a_1 + b_1) x^3 + \cdots + (a_n + b_n) x^{n + 2} \\
&= \Big(a_0 x^2 + a_1x^3 + \cdots + a_n x^{n + 2}\Big) + \Big(b_0 x^2 + b_1 x^3 + \cdots+ b_n x^{n + 2}\Big) \\
&= x^2 (a_0 + \cdots + a_n x^n) + x^2 (b_0 + \cdots + b_n x^n) \\
&= x^2 u + x^2 v \\
&= T(u) + T(v)
\end{align*}
齐性同理可证