将 u(z) 转为极坐标形式 \[ u(z) = -\frac{1}{2\pi i} \iint_C \frac{\psi(\zeta)}{\zeta - z} \, d\overline{\zeta} \wedge d\zeta \] 将 \(\zeta\) 转换为极坐标形式 \(\zeta = z + re^{i\theta}\),我们有: \[ d\zeta = e^{i\theta} \, dr + ire^{i\theta} \, d\theta \] \[ d\overline{\zeta} = e^{-i\theta} \, dr + ire^{-i\theta} \, d\theta \] 接下来我们需要计算面积元素 \(d\overline{\zeta} \wedge d\zeta\): \[ d\overline{\zeta} \wedge d\zeta = (e^{-i\theta} \, dr + ire^{-i\theta} \, d\theta) \wedge (e^{i\theta} \, dr + ire^{i\theta} \, d\theta) \] 展开楔积: \[ d\overline{\zeta} \wedge d\zeta = e^{-i\theta} e^{i\theta} \, dr \wedge dr + ire^{-i\theta} e^{i\theta} \, d\theta \wedge dr + ire^{-i\theta} e^{i\theta} \,
Read more