Linear Algebra Done Right,3E (3.4) 线性映射举例
多项式乘以 `$x^2$` 为线性映射 定义如下线性映射: `$T \in L( P( R ), P( R ) ) $` 对于所有 `$x \in R$` , `$(Tp)(x) = x^2p(x)$` 此映射为一线性映射,证明过程如下 先来证明加性(additivity) 设 \begin{align*} u = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n \end{align*} \begin{align*} v = b_0 + b_1 x + b_2 x^2 + \cdots + b_n x^n \end{align*} 然后 \begin{align*} T(u + v) &= x^2 (u + v) \\ &= x^2 \Big((a_0 + b_0) + (a_1 + b_1) x + \cdots + (a_n + b_n)x^2\Big) \\ &= (a_0 + b_0) x^2 + (a_1 + b_1) x^3 + \cdots Read more